Самодельные осциллографы перестают быть редкостью по мере развития микроконтроллеров. И естественным образом возникает потребность в щупе для него. Желательно со встроенным делителем. Некоторые из возможных конструкций рассмотрены в данной статье.
Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:
Щуп в разобранном виде:
Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:
- Если выполняете щуп без делителя, т.е. он не содержит в себе больших сопротивлений и переключателей, т.е. элементов подверженных электромагнитным наводкам, то целесообразно экранированный провод щупа протягивать до самой иглы. В этом случае дополнительная экранировка элементов вам не понадобится и щуп можно выполнять из любого диэлектрика. Например использовать один из щупов для тестера.
- Если в щупе выполнен делитель, то когда вы берете его в руки, вы неизбежно будете увеличивать наводки и помехи. Т.е. потребуется экранировка элементов делителя.
В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.
В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.
Содержание
Подбор провода
Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:
Миниджек 3,5 мм расположен рядом для масштаба
Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.
Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.
Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.
И важно понимать, чем ниже собственная емкость изготовленного щупа, тем лучше. Это связано с тем, что когда вы подключаете щуп к исследуемому устройству, вы тем самым подключаете дополнительную емкость.
Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.
Принципиальные схемы щупов
Собственно схема щупа, которую я применил, предельно проста:
Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.
Пожалуй вот более правильная схема, которую стоило бы рекомендовать:
Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.
Я ее никогда не делал, рекомендаций по настройке (подбору конденсаторов С2, С3, С4) дать не могу.
Немного обещанной теории
Емкость прямо пропорциональна площади проводников и обратно пропорциональна расстоянию между ними. Там еще есть коэффициент, но для нас это не важно сейчас.
Имеем два проводника. Центральная жила и экран провода. Расстояние между ними определяется диаметром провода. Площадь экрана сильно снизить не получится. Да и не надо. Остается снижать ПЛОЩАДЬ ПОВЕРХНОСТИ ЦЕНТРАЛЬНОЙ ЖИЛЫ.
Т.е. снижать ее диаметр насколько это технически целесообразно без потери механической прочности.
Ну а чтобы повысить эту самую прочность при уменьшении диаметра надо выбрать материал попрочнее.
Провод можно представить так:
Распределенная емкость по длине провода. Ну а чем больше будет удельное сопротивление материала центральной жилы, тем меньшее влияние соседние участки (соседние емкости) будут оказывать друг на друга. Поэтому целесообразен провод с высоким удельным сопротивлением. По этой же самой причине нецелесообразно делать провод щупа слишком длинным.
Разъемы рассматривать не буду. Лишь скажу, что оптимальным для осциллографа считаю разъемы BNC. Они чаще всего и применяются. Миниджек, аудиоразъем я бы применять не рекомендовал (хотя сам применяю, в силу того, что не использую осциллограф в цепях со значительными напряжениями). Он опасен. Дернули провод при проведении исследований цепей с хорошим напряжением. Что происходит далее? А далее миниджек, скользя по гнезду, может вызвать замыкание. И даже если в силу разных причин ничего не произошло, на самом миниджеке будет присутствовать это напряжение. А если он упадет к вам на колени? А там открытый центральный контакт и земля рядом.
Лето, жарко, любите работать в трусах? Выбирайте BNC (не реклама). BNC тем и хорош. Его не выдернешь просто так. А даже если и случилось – он закрытый. Ничего опасного произойти не должно, то что в трусах, не пострадает))
Дополнительную информацию можно почерпнуть из цикла статей Входные узлы самодельных осциллографов. Так, теорией поутомлялись, теперь
Щуп № 2
Он хорош тем, что его можно вставить так:
Или вот так, ему безразлично, он свободно крутится.
Устроен он примерно так:
Единственное, что на нем еще будет сделано. Отверстие для выхода провода земли из щупа будет залито каплей термоклея, чтобы сложнее было вырвать его при случайном рывке и провод будет зафиксирован в рукоятке отрезком спички, заточенным под пологий клин.
Чтобы не оборвать и не открутить центральную жилу. Кстати это самый простой способ «лечить» дешевые китайские щупы для тестера, чтобы провод не отламывался от наконечника.
На что стоит обратить внимание: Экран доходит почти до самого наконечника. Не должно быть под пальцами значительного по площади открытого участка центральной жилы, иначе вы будете любоваться наводками с рук на дисплее ослика.
Специально для сайта Радиосхемы – Тришин А.О. Г. Комсомольск-на Амуре. Август 2018 г.
Обсудить статью САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА
Вот и решился в новом году на расширение своего оборудования для диагностики. Теперь я разжился USB осциллографом DISCO 2.
Для чего он нужен?
Для полной диагностики самих датчиков и систем зажигания. Ведь не всегда ЭБУ бьет тревогу и пишет ошибку, что датчик не работает должным образом.
Личный пример — Катушки зажигания
По ссылке запись в БЖ о том, как у меня накрылась катушка зажигания и в результате машина троила и не ехала. Ошибок в ЭБУ небыло и диагностика ничего не показывала.
А ведь решить эту проблему теперь можно за пару секунд, просто поднеся осциллограф к катушке, или ВВ проводам.
Кстати для более точной диагностики и получения осциллограмм с ВВ были заказаны два емкостных датчика:
Я уверен, что большинство так и не понимает до конца для чего используется все это электронное изобилие 🙂
Тогда вот Вам пример:
В конечном итоге, имея адаптер для диагностики, а также этот осциллограф я смогу легко проверить работу датчиков и системы зажигания. Ведь, повторюсь, сам ЭБУ не выдаст Вам ошибку, даже когда ДПКВ выдает неверный сигнал, а в катушке имеется межвитковое замыкание.
По мере работы с машиной/машинами, я постараюсь выложить осциллограммы двигателей ЗМЗ/УМЗ, где будут как примеры рабочих элементов, так и не рабочих.
Вот и решился в новом году на расширение своего оборудования для диагностики. Теперь я разжился USB осциллографом DISCO 2.
Для чего он нужен?
Для полной диагностики самих датчиков и систем зажигания. Ведь не всегда ЭБУ бьет тревогу и пишет ошибку, что датчик не работает должным образом.
Личный пример — Катушки зажигания
По ссылке запись в БЖ о том, как у меня накрылась катушка зажигания и в результате машина троила и не ехала. Ошибок в ЭБУ небыло и диагностика ничего не показывала.
А ведь решить эту проблему теперь можно за пару секунд, просто поднеся осциллограф к катушке, или ВВ проводам.
Кстати для более точной диагностики и получения осциллограмм с ВВ были заказаны два емкостных датчика:
Я уверен, что большинство так и не понимает до конца для чего используется все это электронное изобилие 🙂
Тогда вот Вам пример:
В конечном итоге, имея адаптер для диагностики, а также этот осциллограф я смогу легко проверить работу датчиков и системы зажигания. Ведь, повторюсь, сам ЭБУ не выдаст Вам ошибку, даже когда ДПКВ выдает неверный сигнал, а в катушке имеется межвитковое замыкание.
По мере работы с машиной/машинами, я постараюсь выложить осциллограммы двигателей ЗМЗ/УМЗ, где будут как примеры рабочих элементов, так и не рабочих.