Индукционный ток в контуре

Индукционный ток — электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур [1] . Величина и направление индукционного тока определяются законом электромагнитной индукции и правилом Ленца. Индукционный ток имеет формулу: Φ = Β * S * cos α, где Β – магнитная индукция, S – площадь контура поверхности, а α – угол между вектором нормали и вектором магнитной индукции. [2]

Практическое применение [ править | править код ]

Если менять магнитное поле вблизи неподвижного замкнутого проводника, то причиной индукционного тока является вихревое электрическое поле.

Если двигать замкнутый проводник вблизи неподвижного магнита, то причиной индукционного тока является сила Лоренца.

Индукционные токи лежат в основе поражающего действия электромагнитного оружия.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

§1 Явление электромагнитной индукции.

Закон Фарадея

Индукционный ток в контуре

а) В соленоид, замкнутый на гальванометр, вдвигается и выдвигается постоянный магнит. На гальванометре будет отклонение стрелки, и оно будет тем больше, чем быстрее происходит вдвижение и выдвижение. При изменении полюсов магнита направление отклонения стрелки изменится.

б) В соленоид, замкнутый на гальванометр, вставлена катушка (другой соленоид), через которую пропускается ток. При включении и выключении (т.е. при любом изменении тока) происходит отклонение стрелки гальванометра. Направление отклонения изменяется при включении – выключении, уменьшении – увеличении тока, вдвигании – выдвигании катушек.

Явление электромагнитной индукции заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает индукционный (наведенный) электрический ток.

Возникновение индукционного тока означает, что в контуре действует электродвижущая сила ? i – ЭДС индукции.

Индукционный ток в контуре

Индукционный ток в контуре

В 1834 г. Э.Х. Ленц установил закон, позволяющий определить направление индукционного тока.

Правило Ленца : индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

Знак минус в законе Фарадея является математическим выражением правила Ленца.

Если контур, в котором индуцируется ЭДС, состоит не из одного витка, а из N витков (например, соленоид), то если витки соединены последовательно, ? i будет равна сумме ЭДС, индуцируемых в каждом из витков в отдельности:

Индукционный ток в контуре

Индукционный ток в контуре

– потокосцепление или полный магнитный поток.

Индукционный ток в контуре

Индукционный ток в контуре

Т.к. Ф B = BScosα , то для того чтобы изменить магнитный поток Ф можно изменить:

1) магнитное поле

Индукционный ток в контуре

;

§2 Вращение рамки в магнитном поле

Индукционный ток в контуре

Явление электромагнитной индукции используется для преобразования механической энергии и энергии электрического тока в генераторах.

Рамка площадью S вращается в однородном магнитном поле (

Индукционный ток в контуре

) равномерно с постоянной угловой скоростью ω.

Индукционный ток в контуре

Индукционный ток в контуре

Индукционный ток в контуре

Индукционный ток в контуре

Т.к. частота сети

Индукционный ток в контуре

, то для увеличения

Индукционный ток в контуре

нужно увеличивать В и S . В можно увеличить, применяя мощные постоянные магниты, или в электромагнитах пропускать большие токи. Сердечник электромагнита выбирают с большим µ. Для увеличения S используют многовитковые обмотки.

Если через рамку, помещенную в магнитном поле, пропускать электрический ток, то на нее будет действовать вращающий момент

Индукционный ток в контуре

и рамка начнет вращаться. На этом принципе основана работа электродвигателей, предназначенных для превращения электрической энергии в механическую.

§3 Токи Фуко.

Индукционные токи могут возбуждаться и в сплошных массивных проводниках. В этом случае их называют токами Фуко или вихревыми токами. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко могут достигать очень большой силы.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного поля, индуцирующего вихревые токи. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это используют для демпфирования (успокоения) подвижных частей гальванометров, сейсмографов и т.п. Тепловое действие токов Фуко используется в индукционных плавильных печах.

Для уменьшения токов Фуко сердечники трансформаторов делают из отдельных пластин и пластины перпендикулярны токам Фуко.

Вследствие возникновения вихревых токов быстропеременный ток неравномерно распределен по сечению провода – он вытесняется на поверхность проводника – скин-эффект. Поэтому на высоких частотах используют полые провода.

§4 Индуктивность контура.

Самоиндукция

В любом случае, когда по контуру протекает электрический ток, создается магнитное поле. При этом всегда имеется магнитный поток Ф, проходящий через поверхность, ограниченную рассматриваемым контуром. Любое изменение силы тока в контуре приводит к изменению магнитного поля, сцепленного с контуром, а это в свою очередь вызывает появление индукционного тока. Это явление получило название явления самоиндукции: возникновение Э ДС индукции в проводнике при изменении в нем тока.

Из закона Био-Савара-Лапласа следует

Индукционный ток в контуре

т.е. магнитный поток, сцепленный с контуром, пропорционален току I в контуре

[ L ] = Гн (Генри). 1 Гн – индуктивность такого контура, магнитный поток самоиндукции которого при токе 1 А равен 1 Вб .

Индукционный ток в контуре

Рассчитаем индуктивность L соленоида:

Индукционный ток в контуре

магнитная индукция В соленоида

Индукционный ток в контуре

Индукционный ток в контуре

Индукционный ток в контуре

т.е. индуктивность зависит от геометрических размеров соленоида (

Индукционный ток в контуре

), числа витков и магнитной проницаемости сердечника соленоида. Поэтому можно сказать, что индуктивность L аналог емкости С уединенного проводника, которая также зависит от геометрических размеров, от формы и диэлектрической проницаемости среды.

Применяя к явлению самоиндукции закон Фарадея, получим, что Э ДС самоиндукции

Индукционный ток в контуре

Индукционный ток в контуре

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем. Если ток со

Индукционный ток в контуре

временем возрастает, то

Индукционный ток в контуре

, и

Индукционный ток в контуре

т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником и тормозит его возрастание. Если ток со временем убывает, то

Индукционный ток в контуре

и

Индукционный ток в контуре

т.е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Следовательно, контур, обладающий индуктивностью, имеет электрическую инертность, заключающуюся в том, что любое изменение тока тормозится, тем сильнее, чем больше индуктивность контура.

«Физика – 11 класс»

Направление индукционного тока

Направление индукционного тока, возникающего в катушке, зависит от того, приближается магнит к катушке или удаляется от нее.

Возникающий индукционный ток может притягивать или отталкивать магнит, т.к. катушка становится подобной магниту с двумя полюсами — северным и южным.
На основе закона сохранения энергии можно предсказать, в каких случаях катушка будет притягивать магнит, а в каких отталкивать его.

Взаимодействие индукционного тока катушки с магнитом.

В чем состоит различие двух опытов: приближение магнита к катушке и его удаление?

Индукционный ток в контуре

Если магнит приближать к катушке

Число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, увеличивается.
Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту.
Линии индукции

Индукционный ток в контуре

‘ магнитного поля, созданного возникшим в катушке индукционным током, выходят из верхнего конца катушки.
В катушке появляется индукционный ток такого направления, что магнит обязательно отталкивается.
Для сближения магнита и катушки нужно совершить положительную работу.

Индукционный ток в контуре

Если магнит удалять от катушки

Число линий магнитной индукции, пронизывающих витки катушки, или, что то же самое, магнитный поток, уменьшается.
Линии индукции

Индукционный ток в контуре

‘ магнитного поля, созданного возникшим в катушке индукционным током, входят в верхний конец катушки.
Катушка с током становится аналогична магниту, северный полюс которого находится снизу.
В катушке возникает ток такого направления, что проявляется притягивающая магнит сила.

Аналогично можно рассмотреть опыт, когда на концах стержня, который может свободно вращаться вокруг вертикальной оси, закреплены два проводящих алюминиевых кольца (одно из них с разрезом).

Индукционный ток в контуре

С разрезанным кольцом магнит не взаимодействует, так как разрез препятствует возникновению в кольце индукционного тока.
Отталкивает или притягивает другое кольцо магнит, зависит от направления индукционного тока, возникающего в кольце.
Поэтому закон сохранения энергии позволяет сформулировать правило, определяющее направление индукционного тока.

Правило Ленца

Существует правило, позволяющее определить направление индукционного тока, которое было установлено русским физиком Э. X. Ленцем:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

или более кратко:

Индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

При увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует усилению магнитного потока через витки катушки.
Ведь линии индукции
Источник

Добавить комментарий

Related Post